VFG2...N/VFG3

Valvole di controllo a 2 e 3 vie

Le valvole VFG2...N e VFG3 sono destinate all'uso in impianti di riscaldamento e ventilazione. Sono inoltre particolarmente adatte per sistemi in cui è richiesto l'impiego di materiali resistenti alla dezincificazione (DZR). Le valvole sono progettate per l'utilizzo con gli attuatori della serie RVAN di Regin.

- Dimensioni DN15...DN50
- Valore Kvs 0.63...39
- · Capacitá di regolazione 100:1
- Temperatura fluido -5...+150°C
- Per l'uso nei sistemi di riscaldamento e ventilazione
- Pressione nominale PN16

Funzione

Valvola a 2 vie

Con lo stelo nella posizione inferiore, la valvola è aperta tra le vie A - AB. Con lo stelo nella posizione superiore, la valvola è chiusa tra le vie A - AB.

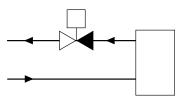


Fig. 1 Valvola a 2 vie

Valvola a 3 vie

Con lo stelo in posizione inferiore la valvola è aperta tra le vie A - AB e chiusa tra le vie B - AB. Con lo stelo in posizione superiore la valvola è chiusa tra le vie A - AB e aperta tra le vie B - AB.

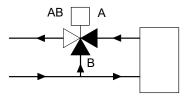
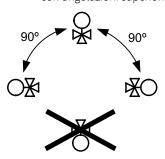


Fig. 2 Valvola a 3 vie


Installazione

La valvola a 2 vie deve essere montata con la porta A sulla mandata e la porta AB sul ritorno (direzione di flusso A ingresso, AB uscita) per assicurare che l'otturatore si chiuda saldamente per evitare qualsiasi rumore durante la chiusura.

La valvola a 3 vie è di tipo miscelatrice e deve quindi essere montata nel punto di miscelazione.

- Prima dell'installazione della valvola di controllo, verificare che il tubo sia pulito. Assicurarsi che i frammenti di lavorazione dei tubi, frammenti metallici, residui di saldatura ed altri materiali estranei siano rimossi.
- Per la massima efficienza e la minima usura, installare la valvola in posizione verticale con lo stelo rivolto verso l'alto. Se la valvola monta un attuatore lateralmente, si avrà una maggiore usura sul premistoppa. La valvola non deve mai essere montata con angolazioni superiori a 90°.
- Installare la valvola secondo la freccia che indica la direzione del fluido riportata sul corpo valvola.
- Assicurarsi che lo spazio sopra la valvola sia sufficiente per la rimozione dell'attuatore.
- Montare un filtro a monte della valvola per prolungare la durata del sistema.
- È consigliata una qualità dell'acqua in accordo a VDI 2035

Caratteristiche tecniche

Applicazione	Sistemi di riscaldamento, raffreddamento, ventilazione e sistemi che richiedono materiali DZR
Pressione nominale	PN16
Attacchi	Filettati internamente (BSP) secondo ISO 228/1
Caratteristica di portata	Equipercentuale
Trafilamento max.	0.1 % del Kvs
Fluido	Acqua calda, acqua fredda, acqua/glicole (max 50% glicole)
Temperatura fluido	-5+150 °C
Capacità di regolazione	100:1
Corsa	20 mm

^{*} DZR = Resistente alla dezincificazione

CE K

Questo prodotto porta il marchio CE. Ulteriori informazioni sono disponibili all'indirizzo <u>www.industrietechnik.it</u>.

Materiale

Corpo	Bronzo duro 1400 LG2	
Sede	Bronzo duro 1400 LG2	
Otturatore	Bronzo duro 1400 LG2	
Stelo	Acciaio inox 303S31	
Premistoppa	Ottone resistente alla dezincificazione CW511L	
0-rings	EPDM	

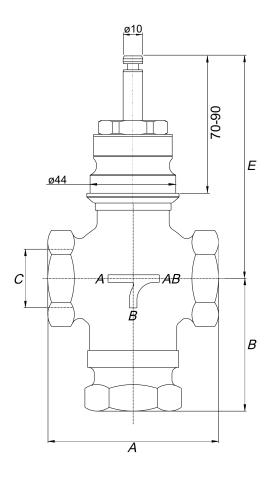
Modelli

Articolo	Diametro nominale	Collegamento	Kvs
VFG2N15-0.63	DN15	G½"	0.63
VFG2N15-1.0	DN15	G½"	1.0
VFG2N15-1.6	DN15	G½"	1.6
VFG2N15-2.1	DN15	G½"	2.1
VFG2N15-2.7	DN15	G½"	2.7
VFG2N20-4.2	DN20	G¾"	4.2
VFG2N20-5.6	DN20	G¾"	5.6
VFG2N25-10	DN25	G1"	10
VFG2N32-16	DN32	G1¼"	16
VFG2N40-27	DN40	G1½"	27
VFG2N50-39	DN50	G2"	39

Valvole a 3 vie

Articolo	Diametro nominale	Attacco	Kvs
VFG315-0.63	DN15	G½"	0.63
VFG315-1.0	DN15	G½"	1.0
VFG315-1.6	DN15	G½"	1.6
VFG315-2.1	DN15	G½"	2.1
VFG315-2.7	DN15	G½"	2.7
VFG320-4.2	DN20	G¾"	4.2
VFG320-5.6	DN20	G3/4"	5.6
VFG325-10	DN25	G1"	10
VFG332-16	DN32	G1¼"	16
VFG340-27	DN40	G1½"	27
VFG350-39	DN50	G2"	39

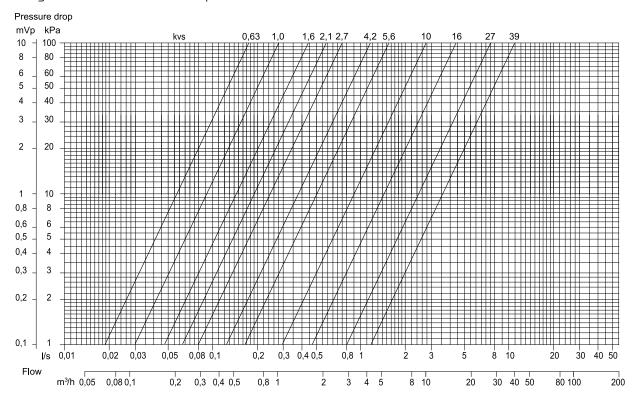
Opzioni di abbinamento (valvole e attuatori) e pressione differenziale


Articolo	ΔPs (RVAN5)	ΔPmax (RVAN5)	ΔPs (RVAN10)	ΔPmax (RVAN10)
VFG*15***0.63	1600 kPa	700 kPa	1600 kPa	700 kPa
VFG*20***4.2	1000 kPa	600 kPa	1600 kPa	600 kPa
VFG*25***10	600 kPa	500 kPa	1400 kPa	500 kPa
VFG*32***16	400 kPa	400 kPa	800 kPa	450 kPa
VFG*40***27	300 kPa	300 kPa	600 kPa	400 kPa
VFG*50***39	200 kPa	200 kPa	400 kPa	400 kPa

ΔPs costituisce la pressione di chiusura alla quale l'attuatore può ancora chiudere efficacemente la valvola.

 Δ Pmax costituisce la massima pressione differenziale consentita sul percorso del flusso della valvola per l'intero campo di azionamento dell'attuatore (vale a dire valvola aperta).

Dimensioni


Articolo	A	B1*	B2**	С	E
VFG*15***0.63	70	51	70	G1⁄2"	110
VFG*20***4.2	80	53	70	G¾"	110
VFG*25***10	90	54	70	G1"	115
VFG*32***16	115	56	80	G1¼"	119
VFG*40***27	130	69	80	G1½"	124
VFG*50***39	160	73	95	G2"	134

La misura B1 si applica a VFG2...N La misura B2 si applica a VFG3

[mm], salvo diversa indicazione

Diagramma delle cadute di pressione

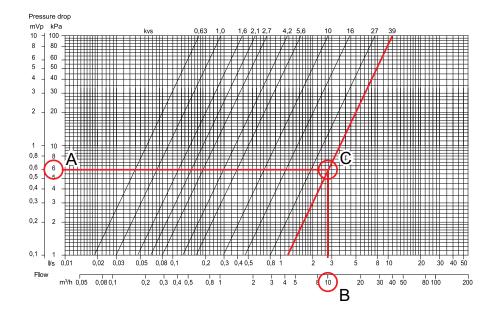


Fig. 3 Esempio: Calcolo del valore kv: Con una caduta di pressione di 6 kPa (A) e una portata di 10 m3/h (B), il valore Kv è 39 (C). Vedere le marcature in figura 7.

Documentazione

La documentazione può essere scaricata da www.industrietechnik.it.

